[ad_1]
Moore, G. E. Cramming additional components onto built-in circuits, reprinted from Electronics, amount 38, amount 8, April 19, 1965, pp. 114 ff. IEEE J. Steady-State Circuits 11, 33–35 (2006).
Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).
Worldwide Roadmap for Devices and Methods (IEEE, 2021). https://irds.ieee.org/editions/2021
Sze, S. M. & Ng, Okay. Okay. Physics of Semiconductor Devices (2006).
Keyes, R. W. Elementary limits of silicon experience. Proc. IEEE 89, 227–239 (2001).
Zhang, G. Q., Graef, M. & Roosmalen, F. V. The rationale and paradigm of ‘larger than Moore’. In 56th Digital Elements and Know-how Conference, pp. 151–157 (IEEE, 2006).
Fiori, G. et al. Electronics primarily based totally on two-dimensional provides. Nat. Nanotechnol. 9, 768–779 (2014).
Liu, Y. et al. Ensures and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Nie, W. et al. Extreme-efficiency solution-processed perovskite picture voltaic cells with millimeter-scale grains. Science 347, 522–525 (2015).
Cao, Y. et al. Perovskite light-emitting diodes primarily based totally on spontaneously usual submicrometre-scale buildings. Nature 562, 249–253 (2018).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional versatile nanoelectronics. Nat. Commun. 5, 5678 (2014).
Leijtens, T., Bush, Okay. A., Prasanna, R. & McGehee, M. D. Options and challenges for tandem picture voltaic cells using metallic halide perovskite semiconductors. Nat. Vitality 3, 828–838 (2018).
Liu, X.-Okay. et al. Metallic halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
Yumoto, G. et al. Sturdy spin–orbit coupling inducing Autler–Townes influence in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D provides. Chem. Mater. 29, 3809–3826 (2017).
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the opening to bridge. Nat. Commun. 11, 3385 (2020).
Jeon, J. H., Jerng, S.-Okay., Akbar, Okay. & Chun, S.-H. Hydrophobic ground treatment and interrupted atomic layer deposition for very resistive Al2O3 motion pictures on graphene. ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital devices. Nat. Electron. 2, 563–571 (2019).
Sheng, Y. et al. Gate stack engineering in MoS2 field-effect transistor for lowered channel doping and hysteresis influence. Adv. Electron. Mater. 7, 2000395 (2021).
McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).
Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).
Straus, D. B., Guo, S., Abeykoon, A. M. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 32, 2001069 (2020).
Senanayak Satyaprasad, P. et al. Understanding price transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D provides and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).
Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical contacts to pure molecular motion pictures by metallic evaporation: influence of contacting particulars. J. Phys. Chem. C 111, 2318–2329 (2007).
Liao, L. et al. Extreme-κ oxide nanoribbons as gate dielectrics for prime mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711 (2010).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration sooner than and previous two-dimensional provides. Nature 567, 323–333 (2019).
Wang, P. & Duan, X. Probing and pushing the limit of rising digital provides via van der Waals integration. MRS Bull. 46, 534–546 (2021).
Lee, G.-H. et al. Versatile and clear MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
Liao, L. et al. Extreme-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).
Liao, L. et al. Excessive-gated graphene nanoribbon transistors with ultrathin high-okay dielectrics. Nano Lett. 10, 1917–1921 (2010).
Liao, L. et al. Extreme-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
Cheng, R. et al. Extreme-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588 (2012).
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed versatile electronics. Nat. Commun. 5, 5143 (2014).
Liu, Y. et al. In the direction of barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).
Wang, J. et al. Transferred metallic gate to 2D semiconductors for sub-1 V operation and near glorious subthreshold slope. Sci. Adv. 7: eabf8744.
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a model new dielectric building for VLSI/ULSI circuits. IEEE Electron System Lett. 9, 180–182 (1988).
Wang, Z. et al. Progress and effectivity of yttrium oxide as a superb high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010).
Durand, C. et al. Electrical property enhancements of yttrium oxide-based metallic–insulator–metallic capacitors. J. Vac. Sci. Technol. A 24, 459–466 (2006).
Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron System Lett. 33, 546–548 (2012).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Gurarslan, A. et al. Ground-energy-assisted glorious swap of centimeter-scale monolayer and few-layer MoS2 motion pictures onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).
Li, T. et al. Epitaxial improvement of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
[ad_2]